A phase field approach for multicellular aggregate fusion in biofabrication.
نویسندگان
چکیده
We present a modeling and computational approach to study fusion of multicellular aggregates during tissue and organ fabrication, which forms the foundation for the scaffold-less biofabrication of tissues and organs known as bioprinting. It is known as the phase field method, where multicellular aggregates are modeled as mixtures of multiphase complex fluids whose phase mixing or separation is governed by interphase force interactions, mimicking the cell-cell interaction in the multicellular aggregates, and intermediate range interaction mediated by the surrounding hydrogel. The material transport in the mixture is dictated by hydrodynamics as well as forces due to the interphase interactions. In a multicellular aggregate system with fixed number of cells and fixed amount of the hydrogel medium, the effect of cell differentiation, proliferation, and death are neglected in the current model, which can be readily included in the model, and the interaction between different components is dictated by the interaction energy between cell and cell as well as between cell and medium particles, respectively. The modeling approach is applicable to transient simulations of fusion of cellular aggregate systems at the time and length scale appropriate to biofabrication. Numerical experiments are presented to demonstrate fusion and cell sorting during tissue and organ maturation processes in biofabrication.
منابع مشابه
In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations.
We present a computational modeling approach to study the fusion of multicellular aggregate systems in a novel scaffold-less biofabrication process, known as 'bioprinting'. In this novel technology, live multicellular aggregates are used as fundamental building blocks to make tissues or organs (collectively known as the bio-constructs,) via the layer-by-layer deposition technique or other metho...
متن کاملModeling and Simulations of Multicellular Aggregate Self-assembly in Biofabrication Using Kinetic Monte Carlo Methods
We employ a three-dimensional (3D) lattice model based on the kinetic Monte Carlo (KMC) method to study cell self-assembly and cellular aggregate fusion of multicellular aggregate systems. This model is developed to describe and predict time evolution of postprinting morphological structure formation during morphogenesis of tissues or organs in a novel biofabrication process known as bioprintin...
متن کاملTissue engineering by self-assembly and bio-printing of living cells.
Biofabrication of living structures with desired topology and functionality requires the interdisciplinary effort of practitioners of the physical, life and engineering sciences. Such efforts are being undertaken in many laboratories around the world. Numerous approaches are pursued, such as those based on the use of natural or artificial scaffolds, decellularized cadaveric extracellular matric...
متن کاملBiofabrication of gold and silver nanoparticles for pharmaceutical applications
Biofabrication by using fungi is an exciting recent interest to develop an eco-friendly production of metallic nanoparticles (NPs) for pharmaceutical applications. This study aimed to synthesize and characterize gold (Au) and silver (Ag) NPs by using Penicillium simplisimum. The fungus was grown in fluid czapek dox broth on shaker at 28 ºC and 200 rpm for ten days. Then the supernatant was...
متن کاملBiofabrication of stratified biofilm mimics for observation and control of bacterial signaling.
Signaling between cells guides biological phenotype. Communications between individual cells, clusters of cells and populations exist in complex networks that, in sum, guide behavior. There are few experimental approaches that enable high content interrogation of individual and multicellular behaviors at length and time scales commensurate with the signal molecules and cells themselves. Here we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanical engineering
دوره 135 7 شماره
صفحات -
تاریخ انتشار 2013